Anthony Hyman: Organization of Cytoplasm

I. How Does Complexity Arise from Molecular Interactions?
II. Building a Polymer: Microtubule Dynamics
III. Formation and Duplication of Centrioles
IV. Formation of P Granules

Part I: How Does Complexity Arise from Molecular Interactions?

Download: This VideoSubtitled Videos: EnglishSpanish
Resources: Transcript(.txt)(.xls)
Trouble Viewing? Try it on iTunes.Report a problem.

Lecture Overview
A eukaryotic cell is often 5-6 orders of magnitude larger than the molecules that make it up. How is it that these molecules interact to organize the complex structures that constitute a cell?

In part 1 of his seminar, Dr. Hyman explains how cell division in a C. elegans embryo provides an excellent model for organization of cellular structures and processes and how RNA interference (RNAi) is an extremely useful tool to study this model. He describes how individual proteins can form complexes of varying size and complexity. Complexes can then organize to form compartments, or non-membrane bound organelles such as centrosomes or the cell cortex, and the organization of these compartments drives the organization of cells. In parts 2, 3 and 4 of his talk, Hyman explains what is known about the organization of increasingly larger and more complex cell structures: the microtubules of the mitotic spindle, centrioles, and finally, P granules. He also discusses the necessity of bringing the tools of physics, chemistry and molecular biology to bear, in addressing the complexity of the cell.

Speaker Bio
Tony Hyman received his BSc in Zoology from University College, London. He did his first experiments on C. elegans as a PhD student in the Laboratory of Molecular Biology, King’s College, Cambridge. He then moved to the University of California, San Francisco to pursue postdoctoral research with Tim Mitchison. In 1993, Hyman moved to the EMBL in Heidelberg and in 1999 he became a Director of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden.

Hyman’s lab studies the spatial control of the microtubule cytoskeleton and how this affects mitosis and cell division. Much of his research uses the technique of RNA interference in C. elegans embryos but some experiments study human cells using bacterial artificial chromosomes (BAC) transgenesis.

Related Talks

Speak Your Mind